

PLACE SOFTWARE

What is it?
The computer industry borrowed our word
Architecture so I borrowed some of theirs

HARDWARE = buildings, streets, furniture

SOFTWARE = how places are used

HACKING = discovering how things work

WHAT’S THIS?

WHAT DOES IT SAY?

NOW YOU KNOW THE
LANGUAGE

DESIGN SKILLS NEEDED

CATHEDRAL QUARTER

WHAT’S THE DIFFERENCE?

PEOPLE DESIGNED SOME
PLACE SOFTWARE

Central

SOFTWARE
 If the Project for Public Spaces is right and
80% of the success of a place is due to its
management (software) then why do
intelligent clients commission designers to
spend most of their resources on hardware?

 This didn’t happen in the fast growing
computer industry. Place software is not yet
benefiting from design input – it is managerial
and needs design.

SOFTWARE DESIGN

•  Architects are well placed to research
•  Designers are natural experimenters
•  The crucial briefing stages need design input

which is often commissioned too late......
•  Clients, particularly public clients, who do not

include the design of built environment
software in the brief will waste money and
produce failures – I can show you some

COMPATIBILITY

•  Hardware and Software have to be compatible
•  Before selecting a device we need to know

whether it will run the software
•  Before designing a place, building or space we

need to know the software it is to support
•  Public space software is not developed and

recorded enough to inform design – we need to
do those experiments

HACKING
 Hacking has a bad name.

 Hacking, however, is a neutral term – it means
finding out how things work – or don’t work.

 Knowing how things work means we can
destroy, repair or just leave them alone if they
are working well.

 Hacking gives us choices.

HACKING (POLITELY)
•  Hacking (politely) into the systems of clients

and citizens discovers how they are working
now, how they can change and what they need
– not what they think they need.

•  Architects acknowledge that research is
needed but it is often omitted from the brief
because clients regard designers as “experts”
and don’t want to pay “extra” for research

PLACE SOFTWARE DESIGN TECHNIQUES:
APPRECIATIVE INQUIRY
Rather than solving problems, Appreciative
Inquiry spots talents and sparks creativity.
Here are some stills from a You Tube video http://www.youtube.com/
watch?v=ZwGNZ63hj5k

PLACE SOFTWARE DESIGN TECHNIQUES:
PROBLEM SOLVING?

PLACE SOFTWARE DESIGN TECHNIQUES:
APPRECIATIVE INQUIRY

PLACE SOFTWARE DESIGN TECHNIQUES:
APPRECIATIVE INQUIRY

PLACE SOFTWARE DESIGN TECHNIQUES:
APPRECIATIVE INQUIRY

PLACE SOFTWARE DESIGN TECHNIQUES:
CIVIC STEWARDSHIP

Civic is about people and place

Stewardship is active caring

PLACE SOFTWARE DESIGN TECHNIQUES:

CIVIC STEWARDSHIP
Action Learning
learning by doing

Connecting
the obvious and the unexpected

Aligning
policies to get things done

Local communities
People who live and work here

Communities of interest
Passionate communities of
interest & expertise (sports, arts,
hobbies, businesses, beliefs)

PLACE SOFTWARE DESIGN TECHNIQUES:
CIVIC STEWARDSHIP

PLACE SOFTWARE DESIGN TECHNIQUES:
TELL US – WHAT’S ON?

PLACE SOFTWARE DESIGN TECHNIQUES:
AND TELL US – ON-LINE

Green Book 2011

•  it’s about activities – not just projects
•  greatest benefits to society
•  other approaches (include radical options)
•  vary the time and scale of activities
•  change capital and recurrent expenditure
•  consult early
•  carry out pilot studies and
•  build in flexibility from the start

PLACE SOFTWARE DESIGN TECHNIQUES:
EVALUATION

